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Estimating topological entropy via a symbolic data compression technique
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We estimate topological entropy via symbolic dynamics using a data compression technique called the
context-tree weighting method. Unlike other symbolic dynamical approaches, which often have to choose ad
hoc parameters such as the depth of a tree, the context-tree weighting method is almost parameter-free and
infers the transition structure of the system as well as transition probabilities. Our examples, including a
Markov model, the logistic map, and the He´non map, demonstrate that the convergence is fast: one obtains the
theoretically correct topological entropy with a relatively short symbolic sequence.
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I. INTRODUCTION

Topological entropy is an important index for dynamic
systems. It was proposed primarily as an indicator of cha
how complex dynamical systems are. Now topological
tropy plays a role in characterizing dynamical systems th
retically. For example, for a continuous map on an interv
positive topological entropy implies the existence of perio
points with a period not equal to a power of 2~@1#, p. 504!.
It also works in practical problems. It gives an upper bou
for metric entropy~@2#, p. 194!, showing the minimum num-
ber of symbols necessary to encode a point using an infi
symbolic sequence.

As the definition of topological entropy is not suitable f
practical calculation, several methods have been propo
for estimating it@3–13#.

Estimating topological entropy is more difficult when on
wants to approximate it from observed time series beca
we often have to choose ad hoc parameters. When one
not have a fitted continuous model, one may find the to
logical entropy by counting the number of distinct adm
sible substrings@3# or counting the number of periodic poin
@4,5#. For the first method, one wants to choose the length
counting distinct symbolic sequences as long as possibl
find a good estimate, although it is not clear what length
reasonable. The second method is likely to fail to detect
riodic points, especially for higher periods.

In this paper, we propose a method for estimating
topological entropy from observed time series using a d
compression technique. Our assumption is that one only
a finite amount of data and one knows how to encode it i
a symbolic sequence using a finite number of symbols.
strength of the proposed method is that we select a Mar
model with states which are variable length substrings of
past symbols, closer to be the most relevant for the obse
time series in terms of code length. As a set of substri
conditioning the past is chosen automatically from a giv
symbolic sequence, we do not have anyad hocparameters to
specify.

In Sec. II, we define topological conjugacy, which faci
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tates finding the topological entropy by representing the
namical system in a different way. In Sec. III, we approx
mate a dynamical system on symbols with a Markov mo
using one of data compression techniques, the context-
weighting method@14,15#, and estimate the topological en
tropy of the original system by finding that for the Marko
model. In Sec. IV, we present three examples, namely, a M
kov model, the logistic map, and the He´non map, showing
how well we can estimate their topological entropies us
the proposed method. Section V concludes this paper.

II. TOPOLOGICAL CONJUGACY

In this section, we define topological conjugacy. The a
of this section is to explain that if one has a dynamical s
tem topologically conjugate with the original system, we c
find the topological entropy of the original system by findin
that of the conjugate system.

There are several possible definitions of topological
tropy which are all equivalent~@1#, pp. 105–118!. We use the
definition proposed in Ref.@16#.

Let us assume that there are two dynamical syste
which behave in the same manner, but in differentcoordi-
nates. These two systems are transformed into each othe
a topological conjugacy. Formally, a topological conjugacy
defined in the following way.

Let M be a metric space andf :M→M a map on it. We
call the pair (M , f ) a dynamical system.

Suppose that there are two dynamical systems (M , f ) and
(N,g). Let h:M→N be a continuous map. Suppose thath is
one-to-one and onto, and its inverse is continuous. Then
call h a topological conjugacy and the relationh„f (x)…
5g„h(x)… holds for anyxPM . We also say that (M , f ) and
(N,g) are topologically conjugate.

Topological entropy is invariant under topological conj
gacy ~@1#, p. 109!.

When two dynamical systems are topologically conjuga
one of them may be a symbolic dynamics. We call (N,g) a
symbolic dynamics whenN is a shift space consisting o
infinite symbolic sequences with a finite number of symb
andg is a shift on it.
©2003 The American Physical Society05-1
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III. ESTIMATING TOPOLOGICAL ENTROPY
FROM TIME SERIES

In this section, we describe a method for estimating to
logical entropy using a symbolic sequence. We would like
build a Markov model from a symbolic sequence beca
one can easily find topological entropy for a Markov mod
by finding the largest eigenvalue of its adjacency matrix@17#.
There is some previous work on building Markov models
graphs for estimating the topological entropy when a ma
known @8,10,13# or a map is estimated@11#.

First, we will build a context tree, a tree showing a co
ditional structure in the symbolic sequence, by followi
Willems @15#. At this stage, the context tree does not rep
sent well which substring appears and which does not. N
the built context tree is pruned to obtain the best context
in terms of code length. This may not be immediately su
able for finding topological entropy. Therefore in the thi
step, the pruned context tree is changed into a Markov mo
by extending the pruned context tree. Then finding the la
est eigenvalue for the adjacency matrix of the Markov mo
gives the topological entropy, which we are looking for.

In what follows, suppose that we have a topological co
jugacy of an original system into the corresponding symbo
dynamics, and that we have a finite symbolic sequence g
erated by an observed time series. We also assume tha
original dynamics is topologically transitive~@1#, p. 27!
when we restrict the space to the attractor. Then the topol
cal conjugacy forces the corresponding symbolic dynam
to be also topologically transitive~@17#, p. 205!. Therefore, if
we have an aperiodic observed time series of infinite len
we can expect to see every admissible substring of fi
length.

A. What is a context tree

Our symbolic dynamical modelis a context tree. A contex
tree shows probabilistic structure conditioned on past s
strings of a symbolic sequence. It was first used in dynam
systems in Refs.@18,19#. It has been applied for testing sta
tionarity @19,20# and estimating the entropy rate@21#. In this
paper, we only deal with cases where one needs two s
bols, although general cases can be also handled simi
@18–21#.

Let X be an alphabet, that is, a finite set of distinct sy
bols, andCi ( i 50,1, . . . ,uCu21) be substrings of a sym
bolic sequence onX. Assume that a set ofCi ’s satisfies the
suffix condition, meaning that the substring corresponding
eachCi is not a suffix ofCj for any j Þ i ~@22#, p. 120!. Then
these substrings can be represented as leaves of a tree, r
on their last symbols and sharing paths corresponding
common suffices.~So the most recent symbols are closest
the root in such a tree.! We call this tree a context tree an
each of the substrings corresponding to its leaves acontext.
We call the tree Markov if the set ofCi ’s forms a Markov
chain.

We show an example of a context tree in Fig. 1. Its co
texts are 0, 001, 101, and 11. Descending the tree co
sponds to going back into the past~i.e., to earlier symbols!.
For example, to reach the node 001 from the root of the t
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we descend the arc 1 starting from the root, showing a s
bol 1 time unit in the past, followed by descending the ar
~2 time units past!, and the arc 0~3 time units past!.

A set of contextsCi gives a description of conditiona
structure. We denote the conditional probability of the ne
outcomeX given the current contextCi by P(XuCi). For
example, if the conditional probability at contextCi is
P(0uCi)51, the behavior is deterministic for this contex
one always has 0 afterCi .

B. Using a context tree to evaluate topological entropy

In the preceding subsection, we explained a context
as a tool for representing a conditional structure in a sy
bolic sequence. This section shows how to obtain this kind
context tree from a symbolic sequence. We utilize insig
from data compression, specifically universal coding, wh
techniques compress data generated from any station
probabilistic source asymptotically in the shortest leng
without using prior knowledge.

The steps for obtaining a context tree for evaluating to
logical entropy are as follows.

~1! Build a context tree in essentially the same way
Willems did in his context-tree weighting method@15#. ~We
will outline the method shortly.!

~2! Prune the context tree to obtain the best model
terms of the code length.

~3! Convert the pruned context tree into a Markov cha
In more detail, the steps are as follows.

1. Building a context tree from a symbolic sequence

Suppose one has a symbolic sequencex1x2•••xN of
lengthN overX. Let e be a symbol marking the beginning o
the symbolic sequence: we change the original seque
x1x2•••xN , into ex1x2•••xN , which is a sequence over th
new alphabetXø$e%.

For symbolxi , the past subsequence isex1x2•••xi 21 if
i .1, and e if i 51. Using all the past subsequences,
build a context tree as follows.

First we initialize the tree to just contain the root with
single childe. We record at the child node whether the ne

FIG. 1. An example of a context tree.
5-2
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symbol x1 is 0 or 1. This process corresponds to the c
wherei 51.

Suppose that we have built the tree using the sub
quences up toex1x2•••xi 21 if i .1 or e if i 51. Then we
insert the subsequenceex1x2•••xi into the existing tree by
following the symbolsxi ,xi 21 , . . . ,e backwards in time,
while descending the tree from the root; we extend the
as required, until the symbole has been added. At the lea
corresponding to the contextex1x2•••xi , we record whether
the next symbolxi 11 is 0 or 1. After the construction, ever
past sequence is represented by a unique leaf.

The construction we have given here is clearly inefficie
but it is not hard to encode the same process so that the
can be constructed in space of orderN.

The context tree does not at present have the conditi
probabilities seen in Fig. 1. We will allocate these usi
next-symbol counts.

For any given node, letn0 and n1 be the counts for the
next symbols 0 and 1, respectively. The counts at any
have already been allocated: they are either (n051, n1
50) or (n050, n151). The count at any internal node
the cumulative sum of the counts of its descendants, wh
can be generated by tracing the tree upwards from the lea
We could immediately define a conditional probability
each node, but for this paper we will be pruning the tree fi
which we describe shortly.

An example of the construction we have just described
shown in Fig. 2. The given sequence is 011010. First we
e at the beginning of the sequence, obtaininge011010. The
past subsequences aree, e0, e01, e011, e0110, ande01101
for the symbolsx150, x251, x351, x450, x551, and

FIG. 2. Building an unbounded-depth context tree from a sy
bolic sequence 011010. We start building it by preparing a t
containing just a root with a childe. Then we insert all the pas
subsequences into it. At each leaf, where one findse, we mark the
next symbol. Using this marking, we find the counts of the n
symbols 0 and 1 for every internal node by going up the tree fr
the leaves. Two numbers shown next to each context show, from
left, the counts for the next symbols 0 and 1 observed after
context in the symbolic sequencee011010.
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x650, respectively. We add each past subsequence into
context tree we are building. At each leaf, we mark the n
symbol, which assigns its counts. Using this marking,
obtain the counts at each internal node.

2. Batch pruning

The context tree built above is not suitable for estimat
topological entropy, since it does not show which substrin
can appear and which are forbidden. Instead of using
context tree as it is, we prune it in a way that is optimal
terms of ‘‘code length’’ by importing a method from dat
compression. This step was also discussed in Ref.@18#.

~a! Two code lengths for each context.We call a coding
techniqueuniversalif it achieves the shortest length for an
stationary information source asymptotically. There are s
eral universal codings@22#. When these methods choose
model from a class of models, the selected model can
regarded the best in the class for the given data. We use
minimum description length~MDL ! principle, which has
been applied for modeling a continuous dynamical syst
from observations@23#. In the present work, we use the MD
principle for finding the best symbolic dynamical model, th
is, the best context tree.

We find the best context tree as a subtree of the con
tree built above. At each node we decide whether we kee
children or prune them. For this, we define two code leng
at each node: the code length when using only the coun
that node, and the code length when also using knowle
about its children. If the first code length is shorter than
equal to the second code length, pruning the children give
shorter code length.

Observe that each node in a context tree corresponds
unique substring represented by the recent symbols. In w
follows, we use a substring for showing the correspond
node.

Given a nodeg, the code length for the next symbols is
given by2 log P(sug), whereP(sug) is the conditional prob-
ability of the next symbols given nodeg @22#. Therefore the
current problem, how to define the two types of code leng
is equivalent to how to decide the conditional probabiliti
for the two different situations. We prepare the two co
lengths by modifying slightly the method proposed
Willems @15#. Throughout this paper, we use 2 for the base
the logarithm.

~b! Code length when using just counts.First we define a
code length at nodeg using just the counts for the nex
symbols. Suppose that the counts for the symbols 0 an
appearing after a substringg area andb. When we do not
have any prior knowledge about the next-symbol distrib
tion, the Krichevsky-Trofimov estimator@14,15# gives a
good estimate for the conditional probability. Under t
Krichevsky-Trofimov estimator, we always add 1/2 to t
count for each symbol at each node: that is, the coun
always 1/2 greater than the number actually observed. T
the conditional probabilities for the next symbols 0 and 1
estimated as

a11/2

a1b11
,

b11/2

a1b11
, ~1!
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e
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respectively. The estimator gives an estimate for the co
tional probability even if the counts are both 0. Given t
countsa andb, the Krichevsky-Trofimov estimator gives th
code lengths for the next symbols 0 and 1 as

2 log
a11/2

a1b11
, 2 log

b11/2

a1b11
, ~2!

respectively. In this way, one can evaluate the code length
the next symbol given the recent substringg and its next-
symbol countsa andb.

We are interested in the ‘‘total cost’’ of coding all th
symbols appearing after the substringg in a symbolic se-
quence. Denote byag andbg the number of symbols 0 and
appearing after a substringg in the whole symbolic se-
quence. Let

Pe~ag ,bg!5

1

2

3

2
•••••S ag2

1

2D 1

2

3

2
•••••S bg2

1

2D
12•••••~ag1bg!

.

~3!

We definePe(0,0)51 for convenience. Then the code leng
for describing all the next symbols appearing after contexg
in the symbolic sequence is given by2 log Pe(ag ,bg). This
gives the code length for nodeg when one does not use th
knowledge about its children.

~c! Code length when using knowledge about childr
When one uses the knowledge about its children, the c
length for each node is defined using more complicated
mulae. The point is that now we may be able to encode m
cheaply because there is additional information available

First, we review how the counts at a node and knowled
about its children are ‘‘merged’’ in the context-tree weighti
method@15#.

At each nodeg, a weighted probabilityPw
g is defined as
re

e
its
r-

w
he
i

02620
i-
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Pw
g 5H 1

2
Pe~ag ,bg!1

1

2
Pw

0gPw
egPw

1g if g is internal,

Pe~ag ,bg! otherwise.
~4!

Although it looks slightly different, this definition is equiva
lent to one in Ref.@15#. Let l be an empty substring corre
sponding to the root of a tree. Using this weighted proba
ity, we define the coding distributionPc(x1

t ) for a symbolic
sequencex1

t as

Pc~x1
t !5Pw

l ~x1
t ue!, ~5!

for all x1
t P$0,1% t,t50,1, . . . . Thecode lengthL(x1

t ) for se-
quencex1

t is upper bounded by thisPc(x1
t ) @14#:

L~x1
t !<2 log Pc~x1

t !12. ~6!

In this way, Willems@15# assigned the probability forx1
t and

used it for compressing a symbolic sequence with arithm
coding.

Our aim is to find themost likely symbolic mechanism
given a symbolic sequence. Therefore, instead of using a
metic coding, we rather focus on the code length for
sequence and select the best model in terms of code le
by finding the context tree which is that subtree of the giv
context tree which minimizes the code length.

Modifying Eq. ~4! slightly gives a code length when cod
ing using a subtree. Willems@15# proved that

2 log Pw
g <11minH 2 log Pe~ag ,bg!, (

i P$0,e,1%
2 log Pw

igJ .

~7!

This suggests that we defineP̃w
g so that
2 log P̃w
g 5H 11minH 2 log Pe

g , (
i P$0,e,1}

2 log P̃w
igJ if g is internal,

2 log Pe
g otherwise.

~8!
to
ted

e

t
ge

be
ical
The first term 1 of 11min$2log Pe
g ,(iP$0,e,1%2 log P̃w

ig% can
be regarded as the cost of describing the topology of the t
or the cost for selecting a certain context tree.~That is, it is
the cost of the binary decision ‘‘prune’’ or ‘‘do not prune.’’!

Thus the quantity2 log P̃w
g can be interpreted as the cod

length for nodeg when one uses the knowledge about
children. By combining the counts with the children’s info
mation in this way, the code length2 log P̃w

g for nodeg using
the knowledge about its children is defined.

~d! Pruning by comparing two code lengths.Now we are
ready to describe the pruning. In principle, at each node
prune its children if coding using just its counts gives t
shorter code length than coding using the knowledge of
e,

e

ts

children. But when we prune the context tree, we have
decide the priority of the nodes: which node should be tes
for pruning first.

We choose to prune from the bottom. Specifically, w
search the tree depth first, and at each nodeg we prune the
children ofg if 2 log Pe

g<2log P̃w
g , where coding using jus

the counts works better than coding using the knowled
about the children.

3. Markovizing

Pruning makes a context tree simpler. However, it may
still hard to use it for purposes such as estimating topolog
5-4
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entropy because sometimes it is not Markov. It has b
stated elsewhere that a tree is Markov if it contains all
subtrees in itself@18#. This is a necessary condition becau
every past context contains the recent symbols necessar
reconstructing the current context. It is also sufficient wh
one uses a complete context tree, for which each inte
node has every child.

However, we would like to use an incomplete conte
tree, as illustrated earlier: that is, we do not create childre
they have zero counts. An incomplete tree is smaller than
corresponding complete tree, but in this case the subtree
dition is not sufficient. It is possible that some contex
which are required by other contexts to make the tree M
kov, may correspond to leaves of the complete tree wh
have been omitted in the incomplete tree because they
not occur in the original symbolic sequence. We can so
this situation by inserting these missing future contexts i
the context tree.

Applying the following algorithm changes the prune
context tree into a Markov tree.

~1! Construct a context tree containing every prefix
each context in the pruned context tree.

~2! For each leafC of the tree, assign the conditiona
probability of the next symbols 0 and 1 byaC /(aC1bC) and
bC /(aC1bC), respectively.

~3! End the algorithm if for each context all the admi
sible next symbols give the corresponding next contexts
transit among the leaves of the tree.

~4! Extend the context tree so that it contains the miss
contexts. Go back to step~2!.

Step ~1! ensures that every context has all the poss
immediately proceeding contexts among the leaves of
context tree. Steps~2!, ~3!, and~4! ensure that each contex
has all the appropriate contexts immediately followi
among the leaves of the tree. By checking the Markov pr
erty for the both time directions, we change the pruned c
text tree into Markov.

This algorithm will finish within a finite time because w
add 2D nodes at most, whereD is the maximum depth of the
pruned tree. Typically, most trees we worked were Ma
ovized after step~1!, and around 20 loops of steps~2!–~4!
were enough for every tree we tested. We show an exam
of the algorithm in Fig. 3. Let us suppose that we obtaine
context tree given in Fig. 3~a!. Assume that at each nod
there can appear both 0 and 1 as the next symbols. Firs
add nodes 0101 and 1101 so that we have all the prefixe
nodes 01011 and 11011 in the context tree. Then, we ob
the tree shown in Fig. 3~b!. But node 00 does not have
destination when the next symbol is 1. Therefore we ad
node 001 into the tree@Fig. 3~c!#. However, the node 001
does not have a destination when the next symbol is
Hence we insert a node 0011@Fig. 3~d!#, completing the
Markovization.

For each contextC, we define the conditional probabilit
of the next symbols 0 and 1 simply byaC /(aC1bC) and
bC /(aC1bC), respectively.

Now we have a Markov chain on the contexts, helpi
find the topological entropy.
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C. Finding topological entropy for a Markov model

After obtaining a Markov model, one can easily find i
topological entropy. For statesi, j of a Markov model, letPi j
be a conditional probability that given the current statei, the
next state isj. Then we define an adjacency matrixT for the
Markov model in the following way:

Ti j 5H 1 if Pi j .0,

0 otherwise.
~9!

Let k be an eigenvalue ofT with the largest absolute
value. It can be shown thatk is always positive, and that th
topological entropy of this Markov model is given by logk
~@17#, p. 120!.

D. Summary

In short, we construct a context tree for estimating top
logical entropy by building a big context tree by followin

FIG. 3. An example of Markovizing a pruned context tre
Edges going down with moving to the left~the right! correspond to
symbol 0 ~1!.
5-5
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Willems @15#, pruning it to have the best context tree
terms of code length, and Markovizing it by extending t
pruned context tree.

The leaves of the Markovized context tree form a Mark
chain. Finding the largest eigenvalue of the adjacency ma
of the Markov chain and taking its logarithm gives an es
mate for the topological entropy.

IV. EXAMPLES

In Sec. III, we explained how to estimate the topologic
entropy using the context-tree weighting method. To sh
the efficacy of the proposed method, we present in this s
tion some examples: a Markov model, the logistic map, a
the Hénon map.

A. Another method for estimating topological entropy
from time series

In the following examples, we compare our method w
previous work: counting the number of the distinct adm
sible substrings of finite lengths@3#.

We briefly summarize the method described in Ref.@3#.
Let N(n) be the number of admissible substrings with leng
n. Then an estimateh(n) of the topological entropy for
lengthn is given by

h~n!5 logN~n!2 logN~n21!. ~10!

However, it was reported@3# that this estimate would oscil
late. To overcome this, we averaged the estimates for sev
lengths and obtained another estimateh̄(n):

h̄~n!5
1

n2m (
i 5m11

n

h~ i !5
1

n2m
log

N~n!

N~m!
, ~11!

wherem5 bn/2c. It can be easily shown thath̄(n) converges
to the topological entropy.

One wants to choose the substring lengthn long to obtain
a good estimate. Butn has to be short enough so that one c
observe all the possible admissible substrings of lengthn.
But there is no prescription for choosingn. Therefore, given
the length l of a symbolic sequence, we chosen to be
b log l/loguXuc arbitrarily and estimatedN(n) and N(m) by
counting substrings appearing in a given symbolic seque

B. Markov model

For the first example, we try to find the topological e
tropy of the following map of@0,1# into itself:

xt115H ~12a!~xt2a!

a
11 xtP@0,a!

xt2a

a21
11 xtP@a,1#.

~12!

Here we takea50.7.
It is known that when we divide@0,1# at the critical point

a into two intervals@0,a) and @a,1#, we have one-to-one
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correspondence between a point in@0,1# and an infinite sym-
bolic sequence to make the symbolization a topological c
jugacy.

This map is equivalent to a Markov chain with two stat
0 and 1 such that 12P(0u0)5P(1u0)51 and 12P(0u1)
5P(1u1)512a. Therefore, we obtain the topological en
tropy by finding the maximum eigenvalue of the followin
adjacency matrix:

F0 1

1 1G . ~13!

Finding its maximum eigenvalue and taking the logarith
we have 0.6942 as the theoretical topological entropy of
system. It should be remarked that this Markov model d
not produce a substring 00, which is forbidden.

FIG. 4. Classification of Markovized pruned context trees o
tained from different symbolic sequences in the numerical exp
ments for the Markov model. At each context of the context tre
we show symbols which do not appear using probabilities if so
of them exist. Trees~a!, ~b!, and ~c!, which appeared dominantly
achieved the correct topological entropy, 0.6942. Tree~d!, with the
topological entropy 0, appeared when the symbolic sequences
periodic. Trees~e!, ~f!, ~g!, and ~h! have 0.4057, 0.5972, 0.5514
0.5514 as their topological entropy, respectively. See Table I for
numbers of occurrences for each tree.

TABLE I. The numbers of Markovized pruned context tre
observed in the numerical simulation of a Markov model. Tr
types from~a! to ~h! correspond to ones shown in Fig. 4. Trees~a!,
~b!, and ~c! achieved the correct topological entropy. Tree~d! cor-
responds to the periodic cases. We see that from any aper
symbolic sequences of length more than 150, we obtained the
rect topological entropy.

Tree type
Length ~a! ~b! ~c! ~d! ~e! ~f! ~g! ~h!

50 86 6 2 2 0 1 1 1
100 93 3 0 2 1 0 0 0
150 97 0 0 2 0 0 0 0
200 94 3 0 2 0 0 0 0
250 97 0 0 2 0 0 0 0
300 96 1 0 2 0 0 0 0
5-6
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In the following way, we generated a set of symbolic s
quences of lengthn. We first prepared 99 initial points
0.01,0.02, . . . , and0.99. For each initial point, we applie
the map, generating (n11000) points. Abandoning the firs
1000 points, we converted the rest into a symbolic seque
of 0 and 1 using the partition mentioned above. We obser
that sequences obtained from 0.7 and 0.79 were of perio

We tested the proposed method with symbolic sequen
of lengths 50, 100, 150, 200, 250, and 300. We focused
their topological structures and classified them depending
the varieties of included contexts, and their possible tra
tions. The classification was shown in Fig. 4. Table I sho
the numbers of context trees which appeared using the te
symbolic sequences. The estimates for each length are
marized in Table II.

When the sequences were periodic, we obtained a con
tree shown in Fig. 4~d! with the topological entropy 0 for
every length investigated here.

For the lengthsn5150, 200, 250, and 300, all the teste
aperiodic sequences achieved the correct topological ent
0.6942. The numbers of tested aperiodic sequences
achieving the correct topological entropy were three
length 50, and one for length 100. Clearly longer symbo
sequences improve the chance of obtaining the correct t
logical entropy.

We found, in this numerical experiment, three types
trees achieving the correct topological entropy as shown
Fig. 4. Although these three models look different, they
equivalent to the original model in the sense that they for
a substring 00. Hence we say that we selected atopologically
correct model from the aperiodic sequences even with len
150.

TABLE II. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from 97 aperiodic symbo
sequences using the proposed method, the Markov model.

Length Maximum Minimum Mean Standard deviatio

50 0.6942 0.5514 0.6913 0.0203
100 0.6942 0.4057 0.6912 0.0291
150 0.6942 0.6942 0.6942 0.0000
200 0.6942 0.6942 0.6942 0.0000
250 0.6942 0.6942 0.6942 0.0000
300 0.6942 0.6942 0.6942 0.0000

TABLE III. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from 97 aperiodic symbo
sequences using Ref.@3#, the Markov model.

Length Maximum Minimum Mean Standard deviatio

50 0.5283 0.5283 0.5283 0
100 0.6160 0.6160 0.6160 0
150 0.5946 0.5946 0.5946 0
200 0.5946 0.5946 0.5946 0
250 0.5946 0.5946 0.5946 0
300 0.5111 0.5111 0.5111 0
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Lastly, we compare the performance of the propos
method with that of Ref.@3#. The estimates obtained usin
Ref. @3# are listed in Table III. The values 0 for the standa
deviations showed that our selection ofn andm was appro-
priate. The estimates occurred widely. The comparison of
estimates using the proposed method with those obta
using Ref.@3# shows that the proposed method works effe
tively.

If the system is Markov, the proposed method seems
provide the theoretically correct topological entropy, giv
only a short aperiodic symbolic sequence.

C. Logistic map

The previous example is a Markov model, which is e
pressed exactly using a context tree of finite depth. Howe
in general, a context tree of a finite depth may not descr
the original dynamics completely as one may need an infi
depth. The next map, the logistic map, illustrates this.

The logistic map is defined as

xt115rxt~12xt!. ~14!

Here we only focus on the parameterr 53.7, which is the
same as one used in Ref.@3#.

We calculated the theoretical value of the topological e
tropy under this parameter using Ref.@6#. Utilizing the first
20 symbols of the kneading sequence, we found that
topological entropy is 0.550 701, which is within 1026 of the
correct value.

Shown in Fig. 5 is a measure exhibited under the para
eter r 53.7. As the orbit looks dense in the invariant set,
the interval approximately equal to@0.2567,0.9250#, the dy-
namics seems topologically transitive on the invariant s
We took a partition consisting of@0,0.5) and@0.5,1# to di-
vide the invariant set, assigning symbols 0 and 1, resp
tively.

We tested the efficacy of the proposed method using
logistic map withr 53.7. Suppose that one wants to ha
symbolic sequences of lengthn. We first had initial points
0.01,0.02, . . . , and0.99, mapping them (10001n) times,

c

c

FIG. 5. A measure observed from the logistic map. We gen
ated 1 001 000 points from an initial point 0.1. After throwing aw
the first 1000 points, we split@0,1# into 1000 bins of the equal size
and built the histogram using the remaining 1 000 000 points.
5-7
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respectively. For each initial point, we threw away the fi
1000 points, changing the remainingn points into a symbolic
sequence of 0 and 1 using a partition containing@0,0.5) and
@0.5,1# as mentioned above. We observed that none of
symbolic sequences were periodic.

We list in Table IV the maximum, the minimum, th
mean, and the standard deviation of our estimated topol
cal entropy for each length. We also show in Fig. 6 the h
tograms of the estimated topological entropy for each len

We have several interesting observations. The first ob
vation is that the estimated topological entropy approac
the theoretical value of the topological entropy when
length of symbolic sequence got longer. But the converge
was not monotonic. Figure 7 shows how the topological
tropy estimated from a sequence changed according to
increase of the length. Although it approached the theoret
value, the error sometimes got bigger than that of the pr
ous values.

The second observation is that the estimated topolog
entropy was sometimes overestimated, sometimes unde
mated. For each length we tested, the maximum was alw
over the theoretical value.

The third observation is that the mean value tended to
more than the theoretical value. It means that we tend
overestimate the topological entropy. If one has some dif

TABLE IV. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from 99 symbolic sequen
using the proposed method, the logistic map.

Length Maximum Minimum Mean Standard deviatio

100 0.6942 0.4205 0.5772 6.99731022

200 0.5973 0.4856 0.5494 1.08131022

1000 0.5515 0.5365 0.5512 2.11731023

10 000 0.5515 0.5501 0.5511 3.40631024

100 000 0.5507 0.5502 0.5507 7.14631025

1 000 000 0.5507 0.5507 0.5507 3.38631026

FIG. 6. Histograms of the estimated topological entropy us
symbolic sequences of lengths 1000~top left!, 10 000~top right!,
100 000 ~bottom left!, and 1 000 000~bottom right!, the logistic
map.
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ent time series, it may be possible to obtain an upper bo
for the topological entropy.

The fourth observation is that the numbers of conte
were relatively small. The numbers of contexts were listed
Table V. Even with symbolic sequences of length 1 000 0
the maximum number of the contexts was 505. We postp
discussing the number of contexts until the next example
we do not have the previous works to compare.

The fifth observation is that the convergence was fast.
histograms shown in Fig. 6. For length 1000, we found
strong peak at a point slightly bigger than the theoretica
correct value. But we also had a small peak at 0.5365, wh
made the standard deviation big. When we changed
length to 10 000, 100 000, and 1 000 000, we saw that
peak of the estimated topological entropy became shar
0.5507, the theoretical value.

We compare the convergence of the estimates obta
using the proposed method with that of Ref.@3#, which were
listed in Table VI. As the standard deviations were small,
assert that the lengths of substrings were appropriate. N
we can check the validity of the lengths of substrings b
cause there are several symbolic sequences for each le
But we remark that when there is only a symbolic sequen
we do not have any way to check the validity of the leng
of substrings when using Ref.@3#. The convergence of both
the methods are compared in Fig. 8. The estimates obta

s
TABLE V. Maximum, minimum, mean, and standard deviatio

of the numbers of contexts of context trees obtained from symb
sequences, the logistic map.

Length Maximum Minimum Mean Standard deviatio

100 15 2 5.2323 2.2894
200 21 4 7.1313 1.9041
1000 22 6 8.3636 2.5252
10 000 135 8 51.8586 22.7699
100 000 219 118 153.6667 24.1433
1 000 000 505 310 411.4141 38.9885

g FIG. 7. Change of the estimated topological entropy along
length of a symbolic sequence generated from an initial point 0
the logistic map. Observe that the estimated topological entropy
not converge to the theoretical value monotonically.
5-8
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using Ref.@3# varied greatly, although those of the propos
method got closer to the theoretical value. Judging from
convergence, the proposed method is better than the me
in Ref. @3#.

We also discuss the convergence quantitatively. T
change of standard deviation with length is shown in Fig
Linear fitting to a log-log plot gave the slope20.9597,
which is close to 1.

To examine how fast the convergence was from a diff
ent viewpoint, we compared the standard deviation of
estimated topological entropy with that of the metric entro
Let Pi be the stationary distribution for contexti. Then the
metric entropy of a Markov model is given by

(
i , j

2Pi Pi j log Pi j . ~15!

We estimatedPi using the sum of the counts on contexi
divided by the sum of all the counts on all the contexts.

Table VII shows the maximum, the minimum, the mea
and the standard deviation of the estimated metric entr
The mean of the estimates for the length 1 000 000 agre
with the Lyapunov exponent suggests that Pesin’s iden
~@2#, p. 198! holds.

The standard deviations of the topological entropy o
tained from various lengths of symbolic sequences are c
pared with those of the metric entropy in Fig. 9. Linear fi
ting in the log-log plot gave the slope for the metric entro

TABLE VI. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from 99 symbolic sequen
using Ref.@3#, the logistic map.

Length Maximum Minimum Mean Standard deviatio

100 0.5283 0.4595 0.5221 1.98831022

200 0.5504 0.5344 0.5480 5.77831022

1000 0.5615 0.5615 0.5615 0
10 000 0.5581 0.5581 0.5581 0
100 000 0.5541 0.5541 0.5541 0
1 000 000 0.5498 0.5498 0.5498 0

TABLE VII. Maximum, minimum, mean, and standard devi
tion of the metric entropy estimated from symbolic sequences
lengths 100, 200, 1000, 10 000, 100 000, and 1 000 000, the log
map. The Lyapunov exponent is 0.512160.0001~obtained by iter-
ating 10 000 000 times for each initial point and averaging over
initial points!, which agrees with the mean estimate obtained w
symbolic sequences of length 1 000 000.

Length Maximum Minimum Mean Standard deviatio

100 0.6666 0.3258 0.524 8.16131022

200 0.5748 0.3663 0.5077 3.48531022

1000 0.5493 0.4847 0.5221 1.10831022

10 000 0.5333 0.5044 0.5185 6.11731023

100 000 0.5157 0.5093 0.5127 1.24331023

1 000 000 0.5131 0.5109 0.5121 4.00931024
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20.5334. It showed that the topological entropy converg
faster than the metric entropy. This is quite natural becau
although the topological entropy can be obtained by find
only a structure that forbids appropriate substrings, for
metric entropy one must estimate not only the topologi
structure but also the conditional probability of the next o
come. Figure 9 provides support for the fact that topologi
entropy is often preferred to metric entropy for analyzi
observed time series.

This example of the logistic map shows that we can u
the proposed method for systems whose corresponding s
bolic sequences are not Markov chains with a finite num
of states.

D. Hénon map

The previous two examples are one-dimensional ma
But our method is not restricted to one-dimensional map
we have a well defined partition which changes a time se
into a symbolic sequence. Here we present an analysis o
Hénon map.

The Hénon map is defined as

S xt11

yt11
D 5S 12axt

21byt

xt
D .

We used a set of standard parametersa51.4 andb50.3.
The topological entropy for the He´non map under these

parameters has been estimated using different techniques
ham and Wenzel@5# estimated 0.670860.0003 ~in base 2!
using the numbers of periodic points. D’Alessandroet al.
@8#, using a graph, gave an estimate, which is, according
Ref. @13#, close to 0.4651 in the natural base (0.6710 in b
2!. Jacobset al. @12# estimated 0.464 9360.000 03 in the
natural base, 0.670 7560.000 04 in base 2, using thestretch-

s

f
tic

9

FIG. 8. The comparison in convergence of the estimates
tained from symbolic sequences generated from the logistic m
between the proposed method and a method in Ref.@3#. The dotted
lines show, from the top, the maximum, the mean, and the m
mum of the estimates obtained using the proposed method.
solid lines show, from the top, the maximum, the mean, and
minimum of the estimates obtained using Ref.@3#. The broken line
shows the theoretical value obtained using Ref.@6#. This graph
indicates that the proposed method converges to the theore
value faster than that in Ref.@3#.
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ing factor. The lower bound is given in Ref.@9# as 0.670~in
base 2!. The upper bound is given in Ref.@13# as 0.4687~in
the natural base!, which is equivalent to 0.6762 in base 2.

There is a proposed method for constructing a genera
partition of the He´non map by connecting theprimary tan-
gencies@24#. One can find points to connect in Ref.@13#.
Assuming that this partition is also a topological conjuga
we employed this partition to obtain, from a time series
symbolic sequence.

We tested our method for symbolic sequences of leng
1000, 10 000, 100 000, and 1 000 000. For each length,
tried to prepare 121 time series of initial points (x0 ,y0)
5(0.1u,0.1v) for u,v50,1, . . .,10. However, it turned ou
that initial points (0,1) and (1,1) were not appropriate b
cause they escaped from the attractor. Therefore, we
used time series of the remaining initial points.

We generated each symbolic sequence in the follow
way: Suppose that one wants to generate a symbolic
quence of lengthn. From each initial point, we applied th
map (10001n) times. After abandoning the first 100

TABLE VIII. Comparison of the numbers of periodic points fo
the Hénon map between the proposed method and the theore
one found in Auerbachet al. @4# and Biham and Wenzel@5#. For
each length, we used a symbolic sequence generated using an
point (0.1,0.1).

Length
Period 1000 10 000 100 000 1 000 000 Theoretic

1 1 1 1 1 1
2 3 3 3 3 3
3 1 1 1 1 1
4 7 7 7 7 4
5 1 1 1 1 1
6 21 15 15 15 15
7 29 29 29 29 29
8 63 63 63 63 63
9 73 64 55 55 55
10 123 103 103 103 103
11 155 155 155 155 155
12 289 247 247 247 247
13 443 443 417 417 417
14 787 675 647 647 647
15 1231 1141 1081 1081 1081
16 2079 1743 1711 1695 1695
17 3180 2891 2806 2823 2823
18 5151 4416 4245 4263 4263
19 8057 7183 6936 6917 6917
20 13167 11287 10827 10807 10807
21 20987 18509 17564 17564 17543
22 34235 28955 27151 27107 27107
23 54764 46668 44322 44368 44391
24 88521 73863 69903 69927 69951
25 141351 118701 112426 112476 112451
26 227555 188321 177349 177349 177375
27 364303 301438 284203 284041 284041
28 586775 480375 449967 449463 449519
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points, we converted the remainingn points into symbols of
0 and 1 using the partition found in Ref.@13#.

First, we compared the numbers of periodic points
showing how well the models are estimated using
context-tree weighting method. Here a periodic point with
periodp means a pointx satisfyingf p(x)5x for mapf. This
x may be a periodic point with period ofp’s factor. For a
Markov model with its adjacency matrixA, the number of
periodic points with periodp is given by the trace ofAp

~@17#, p. 38!.
We used four symbolic sequences for lengths 10

10 000, 100 000, and 1 000 000 generated from an in
point (0.1,0.1) and found the numbers of periodic poin
using each of them. The numbers of periodic points e
mated for each length are listed in Table VIII. For compa
son, we also list, in the same table, the numbers of perio
points obtained by Auerbachet al. @4# for periods up to 10,
and Biham and Wenzel@5# for periods from 11 to 28, which
have been confirmed in Ref.@7#. Table VIII suggests that if
we have a longer time series, the estimated number of p
odic points becomes closer to the true number. In particu
when we used a symbolic sequence of length 1 000 000,
counted the number of periodic points up to period 20 c
rectly, up to period 27 within error of an orbit.

FIG. 9. The standard deviations of the estimated topolog
entropy (*) and that of the metric entropy (1), the logistic map.
We obtained both the values for symbolic sequences of len
1000, 2000, 5000, 10 000, 20 000, 50 000, 100 000, 200 0
500 000, and 1 000 000 except for that of the topological entro
for length 2000, where all its sequences happened to give the s
estimates. Linear fitting gave the slopes in the log-log p
20.9597 for the topological entropy, and20.5334 for the metric
entropy, respectively.

al

itial

TABLE IX. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from symbolic sequences,
Hénon map.

Length Maximum Minimum Mean Standard deviatio

1000 0.7208 0.6373 0.6866 1.414031022

10 000 0.6794 0.6689 0.6753 2.14531023

100 000 0.6711 0.6700 0.6707 1.87031024

1 000 000 0.6708 0.6706 0.6707 3.56231025
5-10
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It shows that modeling using the context-tree weight
method may be used to give an initial rough guess for
numbers of periodic points of unknown systems.

We list the maximum, the minimum, the mean, and t
standard deviation of the topological entropy estimated fr
symbolic sequences of each length in Table IX.

The estimated topological entropy seems to converg
the values proposed by the previous works. In particular,
the values obtained using symbolic sequences of len
1 000 000 were within an estimate of the interval 0.67
60.0003 suggested in Ref.@5#, and the mean of the estimate
was within the interval 0.670 7560.000 04 suggested in Re
@12#. These show that, given a time series of sufficie
length, the proposed method gives the topological entr

FIG. 10. Histograms of the estimated topological entropy us
symbolic sequences of lengths 1000~top left!, 10 000~top right!,
100 000 ~bottom left!, and 1 000 000~bottom right!, the Hénon
map.

FIG. 11. The comparison in convergence of the estimates
tained from symbolic sequences generated from the He´non map
between the proposed method and a method in Ref.@3#. The dotted
lines show, from the top, the maximum, the mean, and the m
mum of the estimates obtained using the proposed method.
solid lines show, from the top, the maximum, the mean, and
minimum of the estimates obtained using Ref.@3#. The broken line
shows the theoretical value obtained using Ref.@6#. This graph
indicates that the proposed method converges to the theore
value faster than that in Ref.@3#.
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agreeing with the theoretical value. Length 10 000 w
enough to have at least a two-digit accuracy.

The mean of the estimates was always more than the
oretical value, as we found with the logistic map.

Now we would like to discuss the speed of the conv
gence. Histograms in Fig. 10, showed the speed of the c
vergence more clearly than the case of the logistic map.
length 1000, the estimated topological entropy was spr
widely. Even the count of the highest peak was 6. Wh
making the length longer, we observed that the peak w
getting sharper. For length 1 000 000, we had 94 out of
estimates at a single bin with the width 1024.

Next we evaluated the speed of the convergence quan
tively. We plotted changes of the standard deviation acco
ing to the length of symbolic sequences in Fig. 12. Line
fitting gave the slope in log-log plot20.8893. Using the
values from length 10 000 to length 500 000, we found
slope20.9802.

We do not have evidence enough to say anything on
value of the slope. It may be always21 or it may depend on
the number of symbols. The value of the slope here is
open problem.

To show the efficacy more clearly, we used also Ref.@3#
for estimating topological entropy.

TABLE X. Maximum, minimum, mean, and standard deviatio
of the topological entropy estimated from symbolic sequences u
Ref. @3#, the Hénon map.

Length Maximum Minimum Mean Standard deviation

1000 0.6710 0.6531 0.6680 3.79531023

10 000 0.6786 0.6753 0.6773 6.55731024

100 000 0.6753 0.6749 0.6752 9.39431025

1 000 000 0.6757 0.6756 0.6757 6.30131026

g
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FIG. 12. The standard deviation of the estimated topolog
entropy (*) and that of the metric entropy (1), the Hénon map. We
obtained both the values for symbolic sequences of lengths 1
2000, 5000, 10 000, 20 000, 50 000, 100 000, 200 000, 500 000,
1 000 000. Linear fitting gave the slopes in the log-log p
20.8893 for the topological entropy, and20.5472 for the metric
entropy, respectively.
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The result when using Ref.@3# is summarized in Table X
In this case, the lengths of substrings were slightly long
the lengths of substrings were correctly chosen, we sho
have seen all the possible admissible substrings in a s
bolic sequence and obtained the same numbers of subst
for each symbolic sequence, that should have made the
dard deviations 0. The convergence of the estimates
compared in Fig. 11. The figure shows that the estima
obtained by the proposed method converged to the litera
value faster than that in Ref.@3#. The comparison sugges
that the proposed method gives the better estimates at
times.

The metric entropy was estimated as shown in Table
The mean value obtained for length 1 000 000 is close
0.6048, the Lyapunov exponent obtained in Ref.@24#. There-
fore, Pesin’s identity seems to hold under the standard
rameter set. We compare the standard deviation of the
mated topological entropy with that of the estimated me
entropy in Fig. 12. Linear fitting in the log-log plot gave th
slope for the metric entropy20.5472. Hence, we also saw i
the Hénon map that the topological entropy converged fas
than the metric entropy.

The numbers of contexts were listed in Table XII. St
these numbers were reasonably small enough to handle
example, it took 10.5 sec using the same computer
MATLAB to find the maximum eigenvalue of the adjacen
matrix of 190331903 for obtaining the topological entrop
of 1 000 000 points data generated from (0.1,0.1), which w
mentioned above.

The proposed algorithm did not take much time to co
struct a context tree. The codes were written in C11, cal-
culated on a computer with CPU AMD-K6 350 MHz an
384 M bytes memory. We used 10 000 and 1 000 000 po
data generated from (0.1,0.1) for the evaluation. For 10
points data, we had a context tree with 115 contexts and
maximum depth 14. To obtain the context tree for evaluat
topological entropy took 0.94 sec. It took 0.09 sec for Ma
ovizing the tree, where the algorithm did not enter the lo
of steps~2!–~4!. For 1 000 000 points data, we obtained
context tree with 1903 contexts and maximum depth 36
took 2 min 18 sec for obtaining the context tree for evalu
ing topological entropy, and 15 sec for Markovizing the tre
doing the loop once.

TABLE XI. Maximum, minimum, mean, and standard deviatio
of the metric entropy estimated from symbolic sequences of len
1 000, 10 000, 100 000, and 1 000 000, the He´non map. The mean
value obtained for length 1 000 000 is close to 0.604860.0002, the
Lyapunov exponent obtained by Grassberger and Kantz@24#, im-
plying that Pesin’s identity~@2#, p. 198! holds under the standar
parameter set.

Length Maximum Minimum Mean Standard deviatio

1000 0.6817 0.5681 0.6339 2.04931022

10 000 0.6388 0.6022 0.6218 7.43331023

100 000 0.6134 0.6043 0.6084 2.09331023

1 000 000 0.6067 0.6038 0.6054 5.45831024
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However, the size of the tree may be slightly bigger th
is found using Markov models, where the map is assume
be known and one can generate desired orbits. For the s
parameter set of the He´non map, D’Alessandroet al. @8#
have 676 nodes as the maximum. Froylandet al. @13# have
1162 nodes as the maximum. There is a trade-off betw
the accuracy and the size of the graph. Unfortunately,
previous works did not mention any accuracy, so we can
further compare our method with the previous works. If t
partition given in Ref.@13# is a topological conjugacy, we
assert that 0.670 7260.000 04, which is obtained with 11
symbolic sequences of length 1 000 000 shown in Table
is one of the most precise estimates of the topolog
entropy of the He´non map under the set of the standa
parameters.

V. CONCLUSION

We have proposed a method for estimating the topolog
entropy given a time series of a finite length and its go
partition. One can apply the method when the original d
namics is topologically transitive and the time series is
periodic. After converting the time series into a symbo
sequence, the method employs a technique called
context-tree weighting method@14,15# to model its dynamics
and find the most reasonable Markov model in the sens
code length. By constructing the corresponding adjace
matrix and finding its maximum eigenvalue, one obtains
estimate of the topological entropy. The biggest advantag
our method is that one does not have to tunead hocparam-
eters, which often appear in other methods.

We demonstrated the performance of the propo
method with a Markov model, the logistic map, and t
Hénon map. In these models, whether they are Markov
not, we found that one can achieve the theoretical valu
the time series is sufficiently long. When we have seve
symbolic sequences, the mean of the estimates tends to
verge to the correct value from above. The convergence
the estimated topological entropy is fast: in our examples
standard deviation almost varied inversely as the length
symbolic sequences and its decay rate was nearly twice
of the estimated metric entropy.
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TABLE XII. Maximum, minimum, mean, and standard devi

tion of the numbers of contexts of context trees obtained from s
bolic sequences using the proposed method, the He´non map.

Length Maximum Minimum Mean Standard deviatio

1000 86 18 37.5 9.6
10 000 238 72 115.3 35.2
100 000 852 440 613.31 73.36
1 000 000 2348 1613 1888.8 127.8
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